segunda-feira, 17 de setembro de 2012

Atividade 1 - TICs Planetas Internos

MERCÚRIO 
 
Mercúrio é o planeta mais próximo do Sol, e tem uma órbita invulgarmente excêntrica (apenas Plutão tem uma excentricidade maior). É o planeta que orbita com maior velocidade (o ano mercuriano tem apenas 88 dias) e é o segundo mais quente (logo a seguir a Vénus). Pela sua proximidade à Terra, que permite a sua observação a olho nu, é um dos 6 planetas conhecidos da antiguidade. De facto, apesar de não emitir luz própria visível, reflecte a luz do Sol e é um dos objectos mais brilhantes do céu. No entanto, é um planeta difícil de observar. Visto da Terra, nunca se afasta muito do Sol e está a maior parte do tempo ofuscado por este. Sem telescópio, só o conseguimos ver durante o pôr ou o nascer do Sol. Por exemplo, quando Mercúrio se encontra perto da sua maior elongação de oeste, pode ser visto pouco antes do nascer do Sol como uma estrela da manhã que o precede. Além disso, o facto de Mercúrio ter uma órbita mais próxima do Sol do que a da Terra permite-nos observar um fenómeno astronómico interessante, chamado Trânsito Solar, quando Mercúrio visto da Terra passa à frente do Sol.
Quando em 1973-1975, a nave espacial Mariner 10 fez 3 voos próximos a Mercúrio, as fotografias que tirou mostraram-nos um planeta estéril, sem atmosfera, com um grande número de crateras causadas pelo impacto de meteoritos dos tempos turbulentos dos primeiros 700 milhões de anos do sistema solar. As semelhanças com a Lua foram logo evidentes, e tal como nesta, não foram observadas evidências da existência de placas tectónicas. Alternadas com zonas de muitas crateras, as imagens mostram ainda zonas lisas, aparentemente o resultado de correntes de lava solidificada provenientes de grandes erupções vulcânicas dos primeiros tempos de vida do planeta. Tal como a Terra, Mercúrio tem também um núcleo de ferro, sendo inclusive o planeta mais rico em ferro do sistema solar; os magnetómetros da Mariner 10 mostraram que, também como a Terra, Mercúrio possui um campo magnético, o que é uma indicação da presença de metais líquidos no seu interior.
Admite-se que Mercúrio possa ter nos pólos gelo proveniente de cometas, no interior de crateras que não vêm a luz solar. Esta possibilidade é sugerida pela alta reflectividade às ondas rádio medida nos pólos a partir de radiotelescópios na Terra. É que apesar de Mercúrio ser um planeta muito quente, o seu eixo de rotação tem uma inclinação de apenas 0.5º em relação ao plano da sua órbita, não tendo por esta razão estações do ano, ficando os seus pólos permanentemente sujeitos a uma fraca incidência de luz solar.

Vênus
Vénus é o segundo planeta mais próximo do Sol e o planeta mais próximo da Terra. As perguntas intrigantes que este planeta "gémeo" da Terra nos coloca começam com o seu movimento de rotação própria. Uma rotação completa sobre si mesmo demora 243.01 dias, o que é um período invulgarmente longo. Além disso, enquanto que a maior parte dos planetas rodam sobre si próprios no mesmo sentido, Vénus é uma das excepções. Tal como Urano e Plutão, a sua rotação é retrógrada, o que significa que em Vénus o Sol nasce a este e põe-se a oeste. Durante muito tempo não se tinha a certeza porque é que existiam estas excepções, uma vez que a maior parte dos corpos no sistema solar, mesmo os satélites dos vários planetas, rodam no mesmo sentido, 'herdado' do movimento de rotação da nuvem primordial, no entanto, estudos dinâmicos recentes da obliquidade dos planetas podem explicar a rotação anómala de Vénus
No seu período de maior brilho, para um observador na Terra, Vénus é o objecto mais luminoso no céu, apenas ultrapassado pelo Sol e pela Lua. Apesar de, tal como Mercúrio, ser um planeta que orbita entre a Terra e o Sol, está suficientemente afastado deste para que o possamos observar sem que a luz Solar nos ofusque. Nos pontos da sua maior elongação difere do Sol por um ângulo de 47º o que permite óptimas condições para ser observado ao nascer e ao pôr do Sol. Por esta razão, desde a antiguidade que Vénus é também conhecido como a estrela matutina ou estrela vespertina. No ponto do seu maior brilho, Vénus é 16 vezes mais brilhante do que a estrela mais brilhante no céu, Sirius. Tal como Mercúrio, Vénus também pode entrar em conjunção interior, quando passa entre o Sol e a Terra, facto que permite que também com Vénus possamos observar um trânsito Solar, quando este visto da Terra passa à frente do Sol. No entanto, isso não acontece com frequência, uma vez que o plano da sua órbita tem uma inclinação de 3.39º com o plano da eclíptica. Os últimos 3 trânsitos de Vénus ocorreram em 1874, 1882 e em 2004.
Vénus é o planeta mais quente do sistema solar devido a um poderoso efeito de estufa, Vénus é por outro lado um planeta muito parecido com a Terra, em tamanho, densidade e força gravítica à superfície, tendo-se chegado a especular sobre se teria condições favoráveis à vida. Hoje sabemos que, apesar de ter tido origens muito semelhantes à Terra, a sua maior proximidade ao Sol levou a que o planeta desenvolvesse um clima extremamente hostil à vida. De facto, Vénus é o planeta mais quente do sistema solar, sendo mesmo mais quente do que Mercúrio, que está mais próximo do Sol. A sua temperatura média à superfície é de 460ºC devido ao forte efeito de estufa que acontece a grande escala em todo o planeta.
Como a fotografia da Mariner 10 nos mostra, ao contrário de Mercúrio, Vénus tem, tal como a Terra, uma atmosfera com nuvens, na qual foi detectada, a partir da observação do espectro da luz reflectida, a presença de grandes quantidades de dióxido de carbono (CO2). Como se sabe, o CO2 é o principal gás responsável pelo efeito de estufa, e nasceu a ideia de que Vénus poderia ter temperaturas muito altas devido a um intenso efeito de estufa. No entanto, até a Mariner 2 fazer o primeiro voo próximo a Vénus e medir a temperatura à sua superfície, não se sabia exactamente qual o rigor dessas condições. Missões posteriores foram confirmando a pouco e pouco as condições agrestes do planeta: uma temperatura à superfície de 460ºC, uma pressão à superfície 90 vezes maior que a pressão na Terra; uma atmosfera composta por 96.5% de CO2 e cerca de 3.5% de azoto (N2), com nuvens de ácido sulfúrico (H2SO4) que se pensa serem provenientes de actividade vulcânica e que, devido às altas temperaturas, nunca condensam em chuva.
O registo de aparente actividade vulcânica em Vénus sugere que esta, tal como a Terra tem um interior líquido. No entanto não exibe campo magnético, o que pode estar relacionado com o seu movimento de rotação própria, demasiado lento para que o núcleo líquido suporte correntes eléctricas a grande escala.
O mais surpreendente em Vénus é que o seu passado é muito semelhante ao da Terra, pensando-se inclusive que em tempos terá tido oceanos, antes de ser dominado pelo efeito de estufa. Este facto leva-nos a perguntar qual terá sido o factor decisivo que levou às diferenças que hoje encontramos entre os dois planetas. É certo que Vénus está mais próximo do Sol, e que a intensidade de luz solar a que está sujeito é portanto maior, mas terá isso sido suficiente para fazer a diferença entre um planeta de clima ameno, com pouco CO2 na atmosfera, abundante em água, e um planeta dominado pelo efeito de estufa, principalmente composto de dióxido de carbono e onde a água desapareceu? A resposta a esta pergunta é essencial para entendermos o delicado equilíbrio que temos na Terra e os riscos que corremos ao perdê-lo.

Terra

erra, o 3º planeta a contar do Sol, apesar de ser aquele que conhecemos melhor, continua a ser o que nos intriga mais. Única no nosso sistema solar, a complexidade física e química dos mecanismos que a fizeram um lugar tão propício à vida continua a surpreender-nos e a intrigar-nos. Terá sido a origem da vida na Terra um evento único num Universo estéril, ou terá sido apenas o passo seguinte, natural em todos os planetas pelo Universo fora que reúnam condições semelhantes? A física poderá ajudar a responder a esta pergunta. Com a física podemos descobrir os mecanismos que estão em jogo na estabilidade e equilíbrio essenciais à vida: o movimento da Terra no presente, no passado e no futuro, a importância da Lua na estabilidade do eixo da Terra e, portanto, na do seu clima, a natureza do Sol e o seu papel energético, a composição química na atmosfera e no interior da Terra, entre muitos mais segredos que nos ajudarão a definir o espectro de condições em que a vida é possível.

Movimento de translação

A Terra demora 365.256 dias a completar uma volta ao Sol. É este movimento, combinado com a inclinação do seu eixo que dá origem às estações do ano que tão bem conhecemos.

Movimento de rotação, o dia e a noite.

Pêndulo de Foucault. A rotação da Terra leva a um movimento aparente do plano de oscilação do pêndulo.
Pêndulo de Foucault. A rotação da Terra leva a um movimento aparente do plano de oscilação do pêndulo.
A Terra leva 23.9345 horas a fazer uma rotação em torno do seu eixo que tem uma inclinação de 23.45º com o plano da eclíptica. É este o movimento responsável pela passagem dos dias e das noites. No entanto, na antiguidade pensava-se que eram o Sol e os outros planetas e estrelas que se deslocavam em torno da Terra. De facto, a passagem dos dias e das noites não é prova de que a Terra roda, uma vez que o movimento é relativo e seria igualmente plausível admitir que é o Sol e toda a esfera celeste que giram. Podemos no entanto provar que é a Terra que gira sobre si mesma fazendo a experiência do pêndulo de Foucault, figura da direita. Se é verdade que a Terra roda, então o plano de oscilação de um pêndulo, que seria sempre o mesmo para um observador fixo, será visto a rodar por um observador que se mova com a Terra. Esta experiência foi realizada pela primeira vez em 1851 pelo físico francês Jean Bernard Leon Foucault (1819-1868), usando um pêndulo pendurado do tecto do Panthéon de Paris. Em lugares longe do pólo Norte ou do pólo Sul, o efeito da rotação da Terra no movimento aparente do plano de oscilação do pêndulo não é tão fácil de calcular como no caso da figura. O período desse movimento aparente depende da latitude do lugar onde o pêndulo é posto a oscilar.
Pêndulo de Foucault do Museu de Ciência da Universidade de Lisboa.
Em 2002, a experiência do pêndulo de Foucault foi escolhida pelos leitores da revista Physics World como uma das dez mais belas experiências de sempre. No átrio do edifício do Museu de Ciência, mesmo antes da recepção, pode apreciar-se uma montagem desta experiência. Se for ao Museu, observe à entrada a posição do plano de oscilação do pêndulo e repare à saída como esta mudou em relação à sala. No pólo Norte ou no pólo Sul, o movimento aparente do plano de oscilação de um pêndulo completaria uma rotação em torno da vertical em 24h, seguindo o movimento da Terra. Em Lisboa, à latitude de 38º, este movimento aparente é mais lento e o plano de oscilação do pêndulo completa uma rotação em aproximadamente dia e meio.

Precessão do eixo de rotação da Terra

Juntamente com os dois movimentos periódicos de rotação própria e de translação, a Terra exibe também um subtil movimento de precessão do seu eixo de rotação, com uma periodicidade de 26.000 anos. Foi detectado pela primeira vez há mais de 2000 anos, no séc. II A.C., por Hiparco. Neste movimento, a orientação do eixo da Terra relativamente à esfera celeste muda, o que faz mudar também as referências para o Norte e Sul geográficos na esfera celeste, os pólos celestes norte e sul. Por exemplo, no tempo dos descobrimentos a estrela polar (Polaris) encontrava-se 3º desviada do verdadeiro pólo norte celeste. Esta discrepância tinha que ser levada em conta em quaisquer cálculos de navegação. Hoje em dia, Polaris tem uma discrepância de apenas 1º e por essa razão é que nos habituámos a confiar na referência "estrela polar" como indicadora do pólo norte. Daqui a uns milhares de anos a estrela polar deixará de ser a Polaris e passará a ser Vega ou Thuban. A figura seguinte mostra o círculo que desenha o eixo da Terra na esfera celeste ao longo do seu movimento de precessão.
Círculo na esfera celeste desenhado pelo eixo da Terra ao longo do seu movimento de precessão.
Círculo na esfera celeste desenhado pelo eixo da Terra ao longo do seu movimento de precessão.
Como mostra a figura, o movimento de precessão leva também a que o plano do equador da Terra mude de orientação, e é a intercepção deste plano com o plano da eclíptica que marca a posição dos equinócios. Assim sendo, a precessão da Terra conduz também a uma lenta alteração dos equinócios no calendário, chamada precessão dos equinócios.
Precessão da Terra.
Precessão da Terra.
A precessão na Terra resulta da acção gravitacional conjunta do Sol e da Lua.
A precessão na Terra resulta da acção gravitacional conjunta do Sol e da Lua.
A precessão acontece porque a Terra roda sobre si mesma. Por um lado, isso levou a que, devido a efeitos centrífugos, o nosso planeta não seja perfeitamente esférico mas ligeiramente achatado nos pólos (o diâmetro equatorial é 43 Km maior que o diâmetro de pólo a pólo). Por outro, pela sua obliquidade, as forças gravitacionais que o Sol ou a Lua exercem sobre a Terra, mais intensas sobre a parte mais próxima do que sobre a mais afastada da deformação equatorial, tendem a 'endireitar' o eixo de rotação, como mostra a figura seguinte. O efeito destas forças, no entanto, não é o de endireitar o eixo de rotação mas sim o de o fazer precessar, o mesmo efeito que todos já observámos num pião. Tal como um pião sujeito ao peso não cai enquanto se mantêm a rodar, também a rotação da Terra sob a acção quer do Sol quer da Lua mantém a sua obliquidade, enquanto precessa em torno da direcção perpendicular ao plano da sua órbita.
As forças responsáveis pela precessão do eixo de rotação da Terra são um exemplo de forças de maré, o nome genérico que se dá ao efeito de forças gravitacionais diferenciais sobre corpos extensos, e que resulta de a intensidade da força gravitacional diminuir com a distância. Um outro exemplo destas forças é o mecanismo pelo qual a atracção gravítica da Lua dá origem às marés.
Forças de maré na Terra causadas pela Lua.
Forças de maré na Terra causadas pela Lua. Os vectores da figura representam a resultante não nula da acção gravítica da Lua sobre a Terra, forças diferenciais. A azul está assinalada (de uma forma exagerada) a deformação resultante na distribuição da água dos oceanos pela superfície da Terra. A rotação da Terra muda a orientação da sua superfície relativamente à Lua e é por esta razão que assistimos ao movimento periódico das marés.
Para além do movimento de precessão, a influência gravitacional dos outros planetas do sistema solar leva a movimentos ainda mais subtis do eixo de rotação da Terra. Por exemplo, a obliquidade, que temos dito que é constante e igual a 23.5º, tem na verdade um movimento próprio chamado nutação, uma ligeira oscilação provocada principalmente pela mudança da posição relativa do Sol e da Lua entre si, que leva também a ligeiras variações da velocidade de precessão. A componente mais importante deste movimento tem um período aproximado de 19 anos.

Terra - O Planeta e a vida

A Terra é o maior dos planetas terrestres. Ao que tudo indica, a sua formação começou também pela agregação de pequenos planetesimais que, juntamente com cometas ricos em gelo que com eles terão colidido, criaram a matéria prima do mundo que hoje conhecemos. De forma a compreendermos a sua história química e geológica, que por sua vez permitiram uma história biológica, é útil olharmos para a abundância média de elementos no Universo e percebermos o papel que tiveram na evolução do nosso planeta.
  • Hidrogénio (H) - É o primeiro elemento da tabela periódica, e o mais leve. É de longe o elemento mais abundante do Universo, mas devido à sua massa reduzida facilmente se escapa do campo gravitacional de pequenos planetas como a Terra. É por esta razão que, ao contrário dos gigantes gasosos, a Terra não formou uma atmosfera predominantemente de hidrogénio. Contudo, o hidrogénio que restou permitiu formar moléculas mais pesadas de H2O.
  • Hélio (He) - Segundo elemento mais abundante do Universo e segundo elemento da tabela periódica. Tal como o hidrogénio, é leve demais para ter formado parte predominante da atmosfera terrestre. Além disso é um gás raro, o que significa que tem dificuldades em ligar-se quimicamente a outros elementos.
  • Oxigénio (O) - Terceiro elemento mais abundante do Universo, e o mais abundante para a combinação com o hidrogénio, dando origem à molécula de água H2O. Terá sido o vapor de água a molécula principal da atmosfera primordial da Terra. Como se sabe, a molécula de água também absorve infravermelhos, o que significa que também contribuí para o efeito de estufa; este factor terá ajudado a retardar o arrefecimento da Terra nos seus primeiros tempos de vida. Quando as temperaturas diminuíram suficientemente, o vapor de água condensou e formaram-se os oceanos. Nesta fase, a diminuição de vapor de água na atmosfera terá reduzido significativamente o efeito de estufa, provocando uma redução mais rápida da temperatura que terá levado ao congelamento dos oceanos.
  • Carbono (C) - O quarto elemento mais comum no Universo. Se não fosse o carbono a Terra ficaria um planeta gelado para sempre. O dióxido de carbono libertado na atmosfera pela actividade vulcânica permitiu compensar a diminuição de vapor de água e conservar parte do calor libertado pela Terra, o que elevou de novo a temperatura. Desta forma os oceanos descongelaram e regressaram ao estado líquido, cobrindo 71% da superfície terrestre. Provavelmente existiria então uma maior abundância de CO2 .
 A vida na Terra.
A vida na Terra.
Entretanto, com o aparecimento de vida no nosso planeta a composição da atmosfera mudou radicalmente. Com os primeiros organismos vivos a transformarem energia solar em energia química, através da fotossíntese, um processo que consome CO2 e água e liberta O2, as quantidades de dióxido de carbono na atmosfera diminuíram significativamente, aumentando as quantidades de oxigénio. De início, o oxigénio libertado terá reagido com outras substâncias e formado óxidos. No entanto, com a proliferação de vida, a quantidade de oxigénio continuou a aumentar, tendo começado, a partir de uma certa altura, a ser depositado livre na renovada atmosfera terrestre.
Com uma abundância tão grande de O2 desenvolveram-se formas de vida, tal como nós, que através da respiração conseguem energia transformando O2 em CO2.
O interior da Terra
Para além da energia do Sol e da de rotação da Terra, que vai sendo muito lentamente transferida para os oceanos devido às forças de maré da Lua, o nosso planeta dispõe ainda de uma terceira fonte de energia: O seu calor interno.
De facto, a Terra é um planeta geologicamente vivo, com actividade vulcânica, um campo magnético global (indicador de um interior líquido), e dividido em placas tectónicas, onde estão assentes os continentes e os oceanos, em permanente mudança. A actividade vulcânica e sísmica na Terra é de tal maneira importante que a maior parte da sua superfície tem menos de 100 milhões de anos (a Terra tem aproximadamente 5 mil milhões de anos). A energia que alimenta esta actividade provém do interior fundido da Terra, composto principalmente por derivados de ferro. A melhor maneira de obter informação sobre o seu interior é através das ondas sísmicas. Sempre que ocorrem terramotos, os geólogos sabem que as ondas que estes produzem sofrem refracção, tal como um raio de luz, que também é uma onda, muda de direcção ao atravessar a superfície de separação entre dois meios conforme a natureza dos dois materiais. Através destas medições, conseguem obter dados importantes sobre a densidade dos materiais a diferentes profundidades e portanto, sobre a sua composição química. Normalmente divide-se a Terra em 4 camadas distintas caracterizadas pela sua densidade e temperatura. Como sabemos, cada material tem uma determinada temperatura de fusão que depende também da pressão. Quanto maior for a pressão a que um material está sujeito, mais difícil é derretê-lo. No interior da Terra passa-se uma espécie de competição entre temperatura e pressão: Por um lado as temperaturas aumentam à medida que a profundidade aumenta, por outro a pressão também aumenta, mas não aumentam da mesma maneira. É a relação entre as duas que nos permite saber a que profundidade é que os materiais estão no estado líquido e a que profundidade estão no estado sólido. A figura abaixo mostra a estrutura interna da Terra.
A Terra tem uma estrutura interna em camadas.
A Terra tem uma estrutura interna em camadas.
O campo magnético da Terrestre
Como dissemos, a Terra possui também um campo magnético global causado pelo movimento de cargas no seu interior líquido induzido pela rotação da Terra e pela energia térmica. Ainda não é claro como o campo surge, mas simulações recentes indicam que aqueles são os principais factores responsáveis pela sua génese. A importância prática das bússolas na orientação fez com que o magnetismo, e o campo magnético da Terra, fossem usados desde muito antes de a física ter desvendado as propriedades destes fenómenos e a sua relação com o movimento de cargas eléctricas. Um aspecto interessante e descoberto há pouco tempo, é que o campo magnético da Terra inverte o seu sentido periodicamente; por exemplo, há 30.000 anos o pólo norte magnético era no pólo Sul geográfico. A evidência deste fenómeno encontra-se na observação de rochas de diferentes idades: os pequenos magnetes permanentes de uma rocha, quando arrefece, na altura da sua formação, irão alinhar-se com o sentido do campo, e ficam 'congelados' nessa configuração quando a rocha arrefece. Passados milhares de anos, o sentido que esses magnetes possuírem indica o sentido do campo magnético na altura da sua formação.
O campo magnético da Terra.
O campo magnético da Terra.
Uma das razões pela qual o campo magnético da Terra é tão importante, para além de ter ajudado os navegadores portugueses a não perderem o norte, é porque serve de escudo ao vento solar que fustiga a Terra, e todo o sistema solar. Este vento é composto por electrões e protões, partículas com carga eléctrica com origem no Sol, que chegam à Terra com grande quantidade de energia. Se a Terra não possuísse campo magnético, seria constantemente bombardeada por estas partículas, o que poderia ter consequências nefastas para a vida. No entanto, uma partícula com carga eléctrica que encontre um campo magnético sofre uma força que a desvia da sua direcção inicial. Assim sendo, como mostra a figura seguinte à esquerda, o campo serve de protecção a estas rajadas. Por vezes, junto aos pólos, onde o campo magnético é mais fraco, algumas partículas conseguem penetrar na atmosfera terrestre; quando isso acontece, podem colidir com átomos excitando-os para níveis elevados de energia. Estes átomos por sua vez tendem a regressar aos níveis mais baixos, e quando o fazem, emitem a luz visível que dá origem às famosas auroras observadas junto aos pólos, figura da direita.
O campo magnético serve de escudo ao vento solar.
O campo magnético serve de escudo ao vento solar.
Aurora boreal.
Aurora boreal.
A Lua.
A Lua.
A Terra só tem uma lua, que terá ficado presa ao campo gravítico terrestre após uma colisão, nos primeiros tempos do sistema solar, entre um protoplaneta e a Terra.
A Lua é o único satélite da Terra e todos sabemos que nos mostra sempre a mesma face. Isto acontece porque o seu período de rotação é igual ao seu período de translação. Diz-se que tem uma rotação síncrona. Este fenómeno é muito geral no sistema solar e é provocado pelas forças de maré que a Terra exerce na Lua, favorecendo esta configuração. Demasiado pequena para reter uma atmosfera, sem campo magnético global, a Lua está geologicamente morta como indicam as grandes quantidades de crateras que observamos.
Segundo a teoria da colisão a Lua é o resultado da colisão de um objecto aproximadamente do tamanho de Marte com a Terra primitiva, o que permite explicar a maior parte das características que observamos hoje em dia. A interacção gravitacional com a Terra afasta-a de nós 3.8 cm por ano. Por sua vez as marés que induz na Terra estão a diminuir a velocidade de rotação do nosso planeta e portanto a aumentar a duração do dia em 0.002 segundos por século. A Lua tem um papel fundamental na estabilização do eixo da Terra. Se não existisse, a Terra estaria sujeita a fortes oscilações na sua obliquidade que teriam decerto, impossibilitado o desenvolvimento de vida no nosso planeta.

Marte

MarteDados de Marte
Marte, depois da Terra, é o planeta mais fácil de estudar.
Visto da Terra parece um planeta vermelho, embora na verdade seja mais acastanhado. O seu eixo de rotação tem uma inclinação muito semelhante à do nosso planeta, 25.19º, o que significa que tem estações do ano. Ao contrário de Mercúrio, que está demasiado perto do Sol para que seja facilmente observado, e de Vénus, cujas densa atmosfera e cobertura de nuvens bloqueiam a observação da sua superfície, Marte está relativamente próximo da Terra sem estar muito próximo do Sol, e tem uma atmosfera muito rarefeita, o que nos permite observar a sua superfície com relativa facilidade. A melhor altura para observar Marte é quando este se encontra na sua oposição, isto é, quando a Terra está entre Marte e o Sol. Quando assim é Marte está próximo da Terra e bem alto no céu nocturno. Esta configuração acontece aproximadamente cada 780 dias.
Paisagem marciana.
Paisagem marciana.
Além das características da sua órbita, com um período de 686.98 dias, os primeiros dados de Marte a serem obtidos através de observações feitas na Terra datam de 1659, quando Christiaan Huygens, observando com um telescópio o movimento de uma grande mancha negra no planeta chamada Syrtis Major concluiu que o seu período de rotação era aproximadamente 24h, muito parecido com o da Terra. Mais tarde, em 1666, o astrónomo italiano Gian Domenico Cassini não só refinou a medida do período de rotação de Marte como terá sido o primeiro a observar os seus pólos, caracterizados, tal como na Terra, por duas manchas brancas. Até ao séc. XX, subsequentes observações chegaram a criar grande especulação sobre a existência de vida inteligente no planeta, embora posteriormente se tenha reconhecido que as imagens obtidas com os telescópios de então tenham induzido em erro os astrónomos.
Posteriormente, na era moderna da exploração espacial, entre 1964 e 1969, as Mariner 4, Mariner 6 e Mariner 7 fizeram os primeiros voos próximos ao planeta e obtiveram as primeiras imagens da sua superfície. Estas mostraram um planeta nalguns aspectos semelhante à Lua, sem nenhuma evidência de vida, e com várias crateras, antigos vulcões e desfiladeiros, o que significa que pelo menos parte da sua superfície é bastante antiga, datando dos primeiros tempos do sistema solar, quando os planetas estavam sujeitos às colisões frequentes de meteoritos. Esta evidência indica também que as forças de erosão em Marte não são tão fortes como as que observamos na Terra, e que a actividade vulcânica no planeta está extinta. Além disso, medições efectuadas pela Mars Global Surveyor mostram que Marte não tem campo magnético, o que significa que o seu interior já não é suficientemente quente para que fluxos de lava possam dar origem a um campo magnético global. No entanto, a missão espacial encontrou nas zonas mais antigas, no hemisfério Sul, rochas magnetizadas em diferentes direcções, o que mostra que Marte teve um campo magnético em tempos e que este, tal como o campo da Terra, invertia o seu sentido de tempos a tempos.

Terá havido água líquida em Marte?

Canais em Marte, evidência de correntes de água que terão existido no planeta.
Canais em Marte, evidência de correntes de água que terão existido no planeta.
Actualmente não há qualquer evidência de que exista água líquida à superfície de Marte. No entanto, missões recentes revelam que terá existido água no estado líquido: canais à superfície com padrões muito semelhantes aos rios na Terra, figura da direita, zonas aparentemente talhadas pela erosão provocada por fortes correntes e, até, pedras lisas com a textura típica de pedras encontradas no leito de rios na Terra. Hoje em dia, contudo, Marte não exibe condições que permitam água no estado líquido à sua superfície. Por um lado, a pressão da atmosfera actual do planeta à superfície é muito baixa: 0.0063 vezes a pressão da atmosfera à superfície da Terra, e como já dissemos, quanto menor é a pressão, mais baixa é a temperatura necessária para a água passar do estado líquido para o gasoso. Por outro, a sua atmosfera muito rarefeita não fornece um mecanismo eficaz de efeito de estufa e a temperatura média em Marte é de -53ºC, oscilando entre máximos de 20ºC e mínimos de -140ºC. Feitas as contas, as combinações possíveis de temperatura e pressão à superfície de Marte não permitem água no estado líquido, apenas no estado sólido ou no gasoso.

Marte começou muito parecido com a Terra, mas evoluiu de maneira diferente.

Quando comparamos o passado de Vénus, Terra e Marte, constatamos que os três planetas apresentaram condições iniciais no tempo da sua formação muito semelhantes: todos eles se formaram a partir do mesmo material da nébula solar e a sua distância ao Sol é da mesma ordem de grandeza. No entanto, Vénus evoluíu para um planeta quente com um forte efeito de estufa, Terra para um planeta moderado onde surgiu vida, e Marte para um planeta frio e quase sem atmosfera. Quando tentamos perceber a razão pela qual tiveram evoluções distintas, chegamos à conclusão que foram os pormenores que os distinguem que levaram a que os mecanismos geológicos e climáticos de cada um deles dessem origem a planetas tão diferentes. Vimos que Vénus tem praticamente o tamanho da Terra, mas a sua maior proximidade ao Sol terá levado a que se desencadeasse um efeito de estufa irreversível que actualmente domina o planeta. Na Terra, ligeiramente mais longe, emergiu um clima equilibrado, onde o efeito de estufa é travado pelos oceanos e pelos mecanismos da vida, que entretanto mudaram a atmosfera. Marte, pelo facto de estar mais longe do Sol, e por ser mais pequeno que a Terra e Vénus, não conseguiu suportar uma atmosfera densa que conseguisse equilibrar a temperatura no planeta.

A atmosfera actual de Marte é consequência do seu pequeno tamanho.

Nuvens em Marte.
Foto tirada pelo Opportunity, veículo de exploração de Marte. Credito: NASA/JPL/CalTech.
Temos visto a importância do efeito de estufa na evolução da atmosfera dos planetas terrestres. Dissemos que em Vénus este efeito se descontrolou, fazendo subir muito a temperatura do planeta. Dissemos também que na Terra o efeito de estufa atingiu um equilíbrio essencial à vida. É curioso observar que no caso de Marte este efeito quase desapareceu.
Desde o séc. XIX que os astrónomos observam nuvens em Marte. Na verdade estas nuvens, figura da direita, fazem parte de uma fina atmosfera composta por 95.3% de dióxido de carbono, 2.7% de azoto e pequenas quantidades de árgon, oxigénio, monóxido de carbono e vapor de água. As nuvens são compostas por pequenos cristais de gelo de água e de dióxido de carbono. Porque é que Marte evoluiu de maneira tão diferente da Terra?
  • No início Marte teria oceanos e uma atmosfera mais densa, e seria mais quente devido à presença de CO2 na atmosfera. Tal como na Terra, o ciclo da água deveria existir: evaporação, condensação, nuvens e chuva. No entanto, o CO2 dissolve-se na chuva e deposita-se no fundo dos oceanos, ligando-se quimicamente a outros materiais e, desta maneira, é retirado da atmosfera. O mecanismo que a Terra tem, e Marte tinha, para devolver o CO2 necessário à atmosfera e manter o efeito de estufa estável envolve erupções vulcânicas.
  • Em Marte, no entanto, por ser mais pequeno, o interior arrefeceu mais rapidamente e a dada altura as erupções cessaram. Sem vulcões, a chuva continuou a remover CO2 da atmosfera sem reposição.
  • Cada vez com menos dióxido de carbono, o efeito de estufa diminuiu e as temperaturas baixaram, o que fez com que ainda mais vapor de água condensasse e chovesse, limpando ainda mais a atmosfera de CO2.
  • À medida que a atmosfera foi ficando mais fina, os raios ultra violeta provenientes do Sol, muito energéticos, começaram a penetrar na atmosfera, rompendo moléculas de N2, CO2 e H2O. Estas, reduzidas às suas partes mais leves escaparam do fraco campo gravítico de Marte. Alguns átomos de oxigénio que ficaram podem ter-se ligado a minerais de ferro à superfície. Estes compostos, que têm uma cor avermelhada, podem ser os responsáveis pela actual cor que vemos em Marte.
  • Ficou assim uma atmosfera fina, onde a pressão à superfície é muito baixa: 0.0063 vezes a pressão da atmosfera à superfície da Terra.
  • Com a descida da temperatura, a água que restava acumulou-se gelada nos pólos que hoje conseguimos ver, juntamente com algum gelo de dióxido de carbono.
Marte: Um planeta desértico.
Marte: Um planeta desértico
Desde 1976, com as duas Viking Vanders, as primeiras missões a aterrarem em Marte, que o nosso conhecimento do planeta vermelho tem evoluído muito. Robots equipados com tecnologia de ponta têm aberto as portas para que um dia um ser humano venha a pisar este planeta. Actualmente, a Spirit e a Opportunity são as duas missões da Nasa a trabalharem no planeta, onde além dos estudos prolongados que fazem ao solo captam imagens espectaculares como a da figura seguinte, obtida pela Spirit. Para mais informações sobre estes projectos clique aqui.
Marte tem duas luas
Deimos e phobos, as duas luas de Marte.
Deimos e Phobos, as duas luas de Marte.
Marte tem ainda duas luas chamadas Deimos e Phobos, que no entanto têm formas irregulares. Têm um tamanho da ordem dos 10 km e assemelham-se mais a asteróides do que a pequenos planetas. Pensa-se que terão sido capturados da cintura de asteróides. Hoje sabemos que esta captura foi possível devido às órbitas irregulares provocadas pela influência gravitacional de Júpiter nalgumas regiões da cintura de asteróides. Este mecanismo aparece como um dos exemplos mais evidentes do caos no sistema solar.


Nenhum comentário:

Postar um comentário